Review of potential environmental impacts of transgenic glyphosate-resistant soybean in Brazil.

نویسندگان

  • Antonio L Cerdeira
  • Dionsio L P Gazziero
  • Stephen O Duke
  • Marcus B Matallo
  • Claudio A Spadotto
چکیده

Transgenic glyphosate-resistant soybeans (GRS) have been commercialized and grown extensively in the Western Hemisphere, including Brazil. Worldwide, several studies have shown that previous and potential effects of glyphosate on contamination of soil, water, and air are minimal, compared to those caused by the herbicides that they replace when GRS are adopted. In the USA and Argentina, the advent of glyphosate-resistant soybeans resulted in a significant shift to reduced- and no-tillage practices, thereby significantly reducing environmental degradation by agriculture. Similar shifts in tillage practiced with GRS might be expected in Brazil. Transgenes encoding glyphosate resistance in soybeans are highly unlikely to be a risk to wild plant species in Brazil. Soybean is almost completely self-pollinated and is a non-native species in Brazil, without wild relatives, making introgression of transgenes from GRS virtually impossible. Probably the highest agricultural risk in adopting GRS in Brazil is related to weed resistance. Weed species in GRS fields have shifted in Brazil to those that can more successfully withstand glyphosate or to those that avoid the time of its application. These include Chamaesyce hirta (erva-de-Santa-Luzia), Commelina benghalensis (trapoeraba), Spermacoce latifolia (erva-quente), Richardia brasiliensis (poaia-branca), and Ipomoea spp. (corda-de-viola). Four weed species, Conyza bonariensis, Conyza Canadensis (buva), Lolium multiflorum (azevem), and Euphorbia heterophylla (amendoim bravo), have evolved resistance to glyphosate in GRS in Brazil and have great potential to become problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pesticides, Food Contaminants, and Agricultural Wastes

Journal of Environmental Science and Health, Part B Pesticides, Food Contaminants, and Agricultural Wastes Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597269 Review of potential environmental impacts of transgenic glyphosate-resistant soybean in Brazil Antonio L. Cerdeira a; Dionsio L. P. Gazziero b; St...

متن کامل

The current status and environmental impacts of glyphosate-resistant crops: a review.

Glyphosate [N-(phosphonomethyl) glycine]-resistant crops (GRCs), canola (Brassica napus L.), cotton (Gossypium hirsutum L.), maize (Zea mays L.), and soybean [Glycine max (L.) Merr.] have been commercialized and grown extensively in the Western Hemisphere and, to a lesser extent, elsewhere. Glyphosate-resistant cotton and soybean have become dominant in those countries where their planting is p...

متن کامل

A Review on Production of Glyphosate-Resistant Plants with Emphasis on Molecular Methods

Herbicide-resistant plants are one of the most common plants that comprise the majority of the total population of transgenic plants. Glyphosate is an herbicide that controls a wide range of plant species. Position of these herbicides reaction is 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) that only exists in plants and some bacteria. This herbicide was known to be suitable and safe for...

متن کامل

Impact of glyphosate on the Bradyrhizobium japonicum symbiosis with glyphosate-resistant transgenic soybean: a minireview.

Glyphosate-resistant (GR) soybean [Glycine max (L.) Merr.] expressing an insensitive 5-enolpyruvylshikimic acid-3-phosphate synthase (EPSPS) gene has revolutionized weed control in soybean production. The soybean nitrogen fixing symbiont, Bradyrhizobium japonicum, possesses a glyphosate-sensitive enzyme and upon exposure to glyphosate accumulates shikimic acid and hydroxybenzoic acids such as p...

متن کامل

Modeling potential freshwater ecotoxicity impacts due to pesticide use in biofuel feedstock production: the cases of maize, rapeseed, salix, soybean, sugar cane, and wheat.

The inclusion of ecotoxicity impacts of pesticides in environmental assessments of biobased products has long been hampered by methodological challenges. We expanded the pesticide database and the regional coverage of the pesticide emission model PestLCI v.2.0, combined it with the impact assessment model USEtox, and assessed potential freshwater ecotoxicity impacts (PFEIs) of pesticide use in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes

دوره 42 5  شماره 

صفحات  -

تاریخ انتشار 2007